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Abstract 

In this paper, we give a kinematical illustration of some distributions called 
special multi-flags distributions. Precisely, we define the kinematic model in 
angular coordinates of an articulated arm constituted of a series of ( )1+n  

segments in 1+kR  and construct the special multi-flag distribution associated to 
this model. 

1. Introduction 

The kinematic evolution of a car towing n trailers can be described by 

a Goursat distribution on the configuration space ( ) .112 +×= nM SR  A 
Goursat distribution is a rank- ( )sl −  distribution on a manifold M of 
dimension ,2 sl +≥  such that each element of its flag of Lie squares, 



MAYADA SLAYMAN and FERNAND PELLETIER 10

[ ] [ ] TMDDDDDDDDD jjjssss =⊂⊂=⊂⊂=⊂= −− 011 ,, ""  

is of codimension 1 in the following one. 

Since 2000, Goursat distributions were generalized in many works 
([7], [12], [13], [14], [15], [20]). Special k-flags ( ),2≥k  which are 
considered to be extensions of Goursat flags, were defined in [7], [14], and 
[20] in several equivalent ways. All these approaches can be reduced to 
one transparent definition (see [1], [24]). A special k-flag of length s on a 
manifold M of dimension ( ) 11 ++ ks  is a sequence of distributions 

[ ] [ ] ,,, 011 TMDDDDDDDD jjjssss =⊂⊂=⊂⊂=⊂ −− ""  

such that the respective dimensions of 01 ,,, DDD ss "−  are ,1+k  
( ) ,11,,12 +++ ksk "  for ,1,,1 −= sj "  the Cauchy-characteristic  

sub-distribution ( )jDL  of jD  is included in 1+jD  of constant corank 

one, ( ) ,0=sDL  and there exists a completely integrable sub-distribution 
1DF ⊂  of corank one in .1D  The integer k is called width. 

The purpose of this work is to show that the problem of modelling car 
towing n trailers can be generalized to the problem of modelling 
kinematic problem for an “articulated arm” constituted of ( )1+n  

segments in ,1+kR  such that to this model is naturally associated a 
special k-flag. 

In the following, an “articulated arm” of length ( )1+n  is a series      

of ( )1+n  segments [ ] ,1,,0,, 1 −=+ niMM ii "  in ,1+kR  keeping           
a constant length ,il  and the articulation occurs at points ,iM  for        

.,,1 ni "=  

It is proposed to study the kinematic evolution of the extremity 0M  

under the constraint that the motion is controlled by the evolution of the 
segment [ ],, 1+nn MM  and that the velocity of each point ,iM  
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,,,0 ni "=  is colinear with the segment [ ]1, +ii MM 1. In this paper, we 

define precisely the kinematic model in angular coordinates of an 
articulated arm, and we construct the special multi-flag naturally 
associated to this model. 

For ,1=k  an articulated arm of length n is a modelling problem of a 

car with n trailers: In this model, the car is symbolized by the segment 
[ ]1, +nn MM  (see [3]). When the number of trailers is large, this problem 

can be considered as an approximation of the “nonholonomic snake” in 
the plane (see [23], for instance). For ,1>k  we can also consider a “snake” 

in 1+kR  (see [22] for a complete description). Again, an articulated arm of 
length n, for n large, can be considered as a discretization of a 

nonholonomic snake in .1+kR  For instance, in ,3R  some problems of 

“towed cable” can model in such a way ([17], [23]). 

In Section 2, we recall the classic context of the car with n trailers 
and its interpretation in terms of Goursat distribution. The articulated 
arm system is developed in Section 3 and also we show how to associate a 
special multi-flags to such a system in Cartesian coordinates. In Section 
4, we gives a version of the kinematic evolution of an articulated arm in 
terms of angular coordinates, and we get a generalization of the classical 
model of the car with n trailers. The last two sections are devoted to the 
proofs of the results. 

2. The Car with n Trailers 

In this section, we will recall some fundamental results about the 
system of the car with n trailers and its relation with the Goursat 
distribution. All these results are now classical and can be found in a 
large number of papers as [2], [3], [11], [18], [26] and many others. 

                                                      
1 such a system is also studied in [10] and is called a “n-bar system”. 

 



MAYADA SLAYMAN and FERNAND PELLETIER 12

2.1. Notations and equations 

A car with n trailers is a configuration of ( )1+n  trailers in the 

-2R plane, denoted by ,,,, 10 nMMM "  and keeping a constant length 

between each two trailers. It is proposed to study the kinematic evolution 
of the trailer nM  with the constraint that the motion is controlled by the 

evolution of ,0M  which symbolize the car. We will use the same 

representation as Fliess [2] and Sordalen [26], where the car is 
represented by two driving wheels connected by an axle. It is a kinematic 
problem with non integrable constraints (i.e., a nonholonomic system) due 
to the rolling without sliding of the wheels. The configuration space of the 
system is characterized by the two dimensional coordinates of nM  and 

( )1+n  angles, whereas there are only two inputs, namely, one tangential 

velocity and one angular velocity, which represent the action on the 
steering wheel and on the accelerator of the car. Consider the system of 
the car with n trailers and suppose that the distances rR  between the 

different trailers are all equal to 1. We choose as a reference point of a 
body rnM −  the midpoint rm  between the wheels; its coordinates are 

denoted by rx  and ry  in a given Cartesian frame of the plane; rθ  is the 

angle between the main axis of rnM −  and the x-axis of the frame. So, the 

set of all positions of the car with n trailers is included in a ( )13 +n -

dimensional space. This system is submitted to 2n holonomic links, which 
give, in the previous space, the 2n following equations: 

,cos 11 −− θ=− rrr xx  

.sin 11 −− θ=− rrr yy  (1) 

The configuration space of this problem is a submanifold of dimension 
( ),3+n  which is parameterized by ( ),,,,, 000 nyxq θθ= …  where 

( )00 , yx•  are the coordinates of the last trailer .nM  
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nθ•  is the orientation of the car (the trailer 0M ) with respect to the 

x-axis. 

,10, −≤≤θ• nrr  is the orientation of the trailer ( )rn −  with 

respect to the x-axis. 

The configuration space can thus be identified to ( ) .112 +× nSR  

The velocity parameters are .,,,, 000 nyx θθ �"���  There are only two 

inputs, namely, the “angular velocity” nw  and the “tangential velocity” 

nv  of the midpoint of the guiding wheels associated to the action of the 

car (see [3]). 

Assume that the contacts between the wheels and the ground are 
pure rolling, it is then submitted to the classical nonholonomic links 

.0cossin =θ−θ rrrr yx ��  (2) 

There are ( )1+n  kinematic equality constraints, one for each trailer. 

In order to establish these constraints, we can represent the points =rmr ,  

,,,0 n"  in the complex plane, i.e., .rrr iyxm +=  The geometric 

constraint between two consecutive trailers is written as 

,11 −θ
− += ri

rr emm      for     .0≠r  

By induction, we have the following equation: 

.
1

0
0 li

r

l
r emm θ

−

=
∑+=  (3) 

The kinematic constraint of rnM −  is 

,ri
rr em θλ=�  

which is equivalent to 

( ( ) ) ,0=θ−
r

i me r �I  
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where ( )zI  denotes the imaginary part of z. Combining this 

characterization with the derivative of (3) and using the linearity of ,I  
we obtain the kinematic constraints 

( ) .,,0,0coscossin
1

000 nryx rjj
r

jrr "��� ==θ−θθ+θ+θ− ∑ −

=
 (4) 

Combining ri
rr em θλ=�  with the derivative of 

,12
1 =−+ rr mm  

we obtain 

( ),coscos 11 rrrr θ−θλ=λ ++  

and by induction 

( ) ( ),coscos 11 rrnnnr θ−θθ−θλ=λ +− "  

so 

( ( )) ,cos 1
1

ri
jj

n

rj
nr em θ

−
+=

θ−θλ= ∏�  

where nn v=λ  is the tangential velocity of the car .0M  

The evolution of the system of car with n trailers can be given by the 
following controlled system with two controls nv  (“tangential velocity”) 
and nw  (“normal velocity”) of :0M  

( )

( )

( )



















=θ

θ−θ=θ

θ−θ=θ

θ−θ=θ

θ=

θ=

−−

++

.
,sin

,sin

,sin
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11

11

0110

000

000

nn

nnnn

rrrr

w
v

v

v
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�

�
"

�
"

�
�

�

 (5) 
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The “tangential velocity” rv  of the body rnM −  is given by 

( ) .cos 1
1

njj

n

rj
r vv −

+=

θ−θ= ∏  

2.2. Goursat flag 

Given a smooth distribution D on a manifold M, we will use the 
standard notation [ ]DD,  to denote the smooth distribution generated by 
the vector fields tangent to D and the Lie brackets [ ],, YX  of any pair 
( )YX ,  of vector fields tangent to D. 

Definition 2.1. A Goursat flag of length s on a manifold M of 
dimension 2+≥ sl  is a sequence of distributions on M 

,2,01231 ≥=⊂⊂⊂⊂⊂⊂ − sTMDDDDDD ss "   (F) 

satisfying the following Goursat conditions: 

(1) ,,,2,1,corang siiDi "==  

(2) [ ] .,,2,1,,1 siDDD iii "==−  (G) 

Each ( )pDi  is a subspace of MTp  of codimension i, for any           

point .Mp ∈  It follows that ( )pDi 1+  is a hyperplane in ( ),pDi  for any    
,0=i  1,,1 −s"  and .Mp ∈  

Definition 2.2. We call any distribution iD  of corank 2≥i  in a 
Goursat flag (F) a Goursat distribution. 

To each flag (F) of Goursat distributions, we associate a flag of 
“Cauchy-characteristic” sub-distributions 

( ) ( ) ( ) ( ) ( ),1231 DLDLDLDLDL ss ⊂⊂⊂⊂⊂ − "   (L) 

where ( )DL  is the sub-distribution of D generated by the set of vector 
fields X tangent to D such that [ ]YX ,  is tangent to D for all Y tangent to 
D. ( )DL  is called the Cauchy-characteristic distribution of D. 
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Lemma 2.1 (Sandwich lemma [11]). Let D be any Goursat distribution 
of corank 2≥s  on a manifold M, and p be any point of M. Then 

( ) ( ) [ ]( ) ( ) ( ),, pDpDDLpDL ⊂⊂  

with ( ) ( ) ( ) [ ]( ) ( ) ( ) .1dim,dim,2dimdim −=−= pDpDDLpDpDL  

It follows a relation between the Goursat flag and its flag of Cauchy-
characteristic sub-distributions 

   01231 DDDDDD ss ⊂⊂⊂⊂⊂⊂ − "  

   ∪∪∪∪  

( ) ( ) ( ) ( ) ( ).1221 DLDLDLDLDL sss ⊂⊂⊂⊂⊂ −− "  

Each inclusion here is a codimension one inclusion of subbundles of 

the tangent bundle. ( )iDL  is an involutive regular distribution on M of 

codimension .2+i  

2.3. Goursat flag associated to the car with n trailers 

Let  

( ),cos 1
1

−
+=

θ−θ= ∏ jj

n

rj

n
rf  

and n
n
rr vfv =  for .1,,1 −= nr "  

The motion of the system associated to the car is then characterized 
by the equation 

( ) ( ).21 qXvqXwq nnnn +=�  

It is a controlled system with controls nv  and ,nw  ( nv  is the tangential 
velocity and nw  is the angular velocity as we have already seen at the 
beginning of the section). Each trajectory of the kinematic evolution of the 
car towing n trailers is an integral curve of the 2-distribution, on 

( ) ,112 +× nSR  generated by 
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( ) ( )
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∂θ−θ++

θ∂
∂θ−θ+
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∂θ+
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1010000
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1

n
nn

nnn
n

n
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fyfxfX

X

"
 

The distribution generated by { },, 21
nn XX  naturally associated to the 

system of the car with n trailers, is a Goursat distribution. 

3. Articulated Arm 

The purpose of this section is to construct a distribution ,∆  of 
dimension ,1+k  naturally associated to an ( )1+n  articulated arm,  

which generates a special k-flag of length ( )1+n  on the configuration 

space ( ) .11 ++ ×≡ nkk SRC  Moreover, the kinematic evolution of this arm 

is an integral curve of .n∆  We begin by recalling the context of special 

multi-flag in the formalism of [1], [14]. 

3.1. Special multi-flags 

A special k-flag of length s is a sequence 

,011 TMDDDDDD jss =⊂⊂⊂⊂⊂⊂= − ""  

of distributions on a manifold M of dimension ( ) ,11 ++ ks  which satisfies 

the following conditions: 

(i) [ ].,1 jjj DDD =−  

(ii) 011 ,,,,,, DDDDD jss ""−  are of respective ranks  ,12,1 ++ kk  

( ) .11,1, +++ kssk"  

(iii) Each Cauchy characteristic sub-distribution ( )jDL  of jD  is a 

sub-distribution of constant corank one in each ,1+jD  for ,1,,1 −= sj "  

and ( ) .0=sDL  

(iv) There exists a completely integrable sub-distribution 1DF ⊂  of 

corank one in .1D  
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Remark 3.1. It should be remarked that the covariant                   

sub-distribution 1DF ⊂  is uniquely determined by 1D  itself. This 
covariant sub-distribution F is completely described in [1] and [24], where 

it is defined in terms of the annihilating Pfaffian system ( ) MTD ∗⊥ ⊂1  

([7]). For a complete clarification on this fact, see [16]. 

Remark 3.2. In the following, we mean by a special multi-flag 
distribution all distribution generating a special multi-flag. 

From the definition above, we obtain the following sandwich diagram: 

TMDDDDD jss =⊂⊂⊂⊂⊂⊂ − 011 ""  

∪"∪"∪∪  

( ) ( ) ( ) .121 FDLDLDL jss ⊂⊂⊂⊂⊂ −−− ""  

All vertical inclusions in this diagram are of codimension one, while 
all horizontal inclusions are of codimension k. The squares built by these 
inclusions can be perceived as certain sandwiches, i.e., each “subdiagram” 

number j indexed by the upper left vertices jD  

1−⊂ jj DD  

∪∪  

( ) ( )21 −− ⊂ jj DLDL  

is called sandwich number j. 

We can read the length s of the special k-flag by adding one to the 
total number of sandwiches in the sandwich diagram. 

Remark 3.3. In a sandwich number j, at each point ,Mx ∈  in the 

( )1+k  dimensional vector space ( ) ( ),11 xDLD jj −−  we can look for the 

relative position of the k dimensional subspace ( ) ( ) ( )xDLDL jj 12 −−  

and the 1-dimensional subspace ( ) ( ) :1 xDLD jj −  
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either ( ) ( ) ( ) ( ) ( ) ( ) ( ),11112 xDLDxDLDxDLDL jjjjjj −−−−− =⊕  

or ( ) ( ) ( ) ( ) ( ).121 xDLDLxDLD jjjj −−− ⊂  

We say that Mx ∈  is a regular point, if the first situation is true in each 
sandwich number j, for .,,1 sj "=  Otherwise, x is called a singular 

point. 

The set of singular points in the context of an articulated arm is 
studied in [25] and these results will be published in a future paper. 

3.2. Special multi-flags and articulated arm 

The space ( ) ,21 ++ nkR  will be written as the product "×+1
0
kR  

.1
1

1 +
+

+ × k
n

k
i RR "  Let ( )11 ,, += k

iii xxx "  be the canonical coordinates on 

the space ,1+k
iR  which is equipped with its canonical scalar product 

( ) 21., ++>< nkR  is equipped with its canonical scalar product too. 

Consider an articulated arm of length ( )1+n  denoted by ( ,,0 "M  
).1+nM  In this paper, we assume that the distances il  are all equal to 1. 

On ( ) ,21 ++ nkR  consider the vector fields 

( ) .,,0for,1

1

1
ni

x
xx r

i

r
i

r
i

k

r
i "=

∂

∂−= +

+

=
∑Z  (6) 

From our previous assumptions (see Section 1), the kinematic evolution of 
the articulated arm is described by a controlled system 

,
1

1

10
r
n

rn

k

r
ii

n

i x
uuq

+
+

+

== ∂

∂+= ∑∑ Z�  (7) 

with the following constraints: 

,11 =− +ii xx  for ni ,,0 "=  (see [10], Chapter 2). 

Consider the map ( ) .1,, 2
110 −−=Ψ ++ iini xxxx "  Then, the 

configuration space C  is the set 
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{( ),,, 10 +nxx "  such that ( ) 0,, 10 =Ψ +ni xx "  for }.,,0 ni "=   (8) 

For ,,,0 ni "=  the vector field 

( ) [ ],
1

1

1

1
r
i

r
i

r
i

r
i

k

r
i

xx
xx

∂

∂−
∂

∂−=
+

+

+

=
∑N  (9) 

is proportional to the gradiant of .iΨ  So, the tangent space CqT  is the 

subspace of ( ) ,21 ++ nk
qT R  which is orthogonal to ( )qiN  for .,,0 ni "=  

Denote by E  the distribution generated by the vector fields 

{ }.,,,,, 1
1

1
1

0 +
++ ∂

∂

∂

∂
k
nn

n
xx

"" ZZ  

Lemma 3.1. Let ∆  be the distribution on C  defined by ( ) =∆ q  

.EC ∩qT  Then ∆  is a distribution of dimension 1+k  generated by 

( ) [ ] ,1,,1,
1

1

10
1 +=

∂

∂+−
+

+

+==
+ ∏∑ krfor

x
Axx r

n
ij

n

ij

n

i

r
n

r
n "Z  

where ( ) ( ) ( ) ( ) ( ) ><−=><= −− qqqqqA jjjjj 11 ,, NZNN  for nj ,,1 "=  

and .11 =+nA  

Proof. Any vector field X tangent to E  can be written as 

.
1

1

10
r
n

r

k

r
ii

n

i x
X

+

+

== ∂

∂µ+λ= ∑∑ Z  

On the other hand, on ,C  a vector fields X is tangent to ,C  if and only 

if X is orthogonal to the vector fields .,,0 nNN "  

For ,1,,0 −= ni "  each relation 0, =>< iX N  is reduced to 

,0,11 =>λ+λ< ++ iiiii NZZ  which is equivalent to 

.11 ++λ=λ iii A   (10) 



ARTICULATED ARM AND SPECIAL MULTI-FLAGS 21

Similarly, the relation 0, =>< iX N  induces 

( ),1

1

1

r
n

r
nr

k

r
n xx −µ=λ +

+

=
∑  (11) 

and from (10) and (11), we get ,
1

ni
n

ij
i A λ=λ ∏

+=
 for .1,,0 −= ni "    

The properties of ∆  are summarized in the following result (see also 
[10], Chapter 2): 

Theorem 3.1. On ,C  the distribution ∆  satisfies the following 
properties: 

(1) ∆  is a distribution of rank .1+k  

(2) The distribution ∆  is a special k-flag on C  of length ( ).1+n  

The first part of Theorem 3.1 is a direct consequence of Lemma 3.1. 
Part (2) will be proved in Section 6 in terms of hyperspherical 
coordinates. 

4. The Evolution of the Articulated Arm in a  
System of Angular Coordinates 

Given an articulated arm ( )10 ,, +nMM "  in ,1+kR  we will show 
that the constraint controlled system (7) can be written in the same way 
as (5) in an adapted system of angular coordinates with ( )1+k  controls, 
namely, nv  (the “normal” velocity of 1+nM ) and the k components of the 
“tangential velocity” of 1+nM  (Theorem 4.1). 

4.1. Hyperspherical coordinates 

The following map: 

( ) ( ),,,,,,,,,,, 11010110 nniini xxxxxxxxxxx −−−=Γ +−+ """"  

implies a global diffeomorphism of ( ) 21 ++ nkR  into itself and ( ) =Γ C  

( ) ,11 ++ × nkk SR  where kS  is the canonical sphere in .1+kR  In this 
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representation, the canonical coordinates on ( ) (( ) )2121 ++++ Γ= nknk RR  

will be denoted by ( )110 ,,,,, +ni zzzx ""  so that Γ  is given by 

00 xx =  and ,1 iii xxz −= +  for .,,0 ni "=  Via this global chart, each 

point ( ) C∈= +110 ,,,,, ni xxxxq ""  can be identified with ( ,, 10 zx  

) ( ) ,,,, 11
1

++
− ×∈ nkk

ni zz SR""  for ni ,,0 "=  and C  can be 

identified with ( ) .11 ++ ×= nkk SRS  

We will put on ( ) 1+nkS  charts given by hyperspherical coordinates. 
We first recall some basic facts about this type of coordinates. 

The hyperspherical coordinates in 1+kR  are given by the relations 

( )

( )

( )

( )

( )
















θρ=θρφ=

θθρ=θρφ=

θθθρ=θρφ=

θθθρ=θρφ=

θθθρ=θρφ=

++

−−

−

−

,cos

,cossin

,cossinsin

,cossinsin

,sinsinsin

111

21

12133

1122

1111

kk

kk

kk

kk

kk

z

z

z

z

z

"

"

"

"

 (12) 

with ( ) ( ) ,20,21212 π≤θ≤++=ρ + kkzz "  and ,0 π≤θ≤ j  for ≤≤ j1  

.1−k  

We consider ( ) ( ) ,,ˆ z=θΦρ=θρΦ  the application from ] [ ×∞+,0  

[ ] [ ] [ ]π×π××π 2,0,0,0 "  to .1+kR  

Remark 4.1. The previous expression uses the “geographical” version 
of hyperspherical coordinates. An another version, maybe more usual, can 

be obtained by taking kθ−π
2  instead of kθ  and then, permuting the 

functions sine and cosine in each formula. However, our choice is 
motivated by the following fact: The evolution of the articulated arm of 
length ( )1+n  written in a such chart, (see (16)) gives exactly the system 
(5) for .1=n  
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The Jacobian matrix Φ̂D  of Φ̂  is: 

.

00sincos

sinsinsincossincoscossinsin

cossinsinsinsincossinsinsin

11

111111

111111























θρ−θ

θθθρ−θθθρθθθ

θθθρθθθρθθθ

−−−

−−−

""""

""""

""""
kkkkkk

kkkkkk

 

It is well known that ( ) ( ) ( )[ ]( ) ( ) .sin1,ˆdet
1

1

21 iik
k

i

kkD −
−

=

+ θρ−=θρΦ ∏  

It follows that Φ̂D  is invertible only for π≤θ≤ 20 k  and ,0 π<θ< j  for 

.1,,1 −= kj "  

In the sequence, we note { }kθ∂

∂

θ∂

∂=Φ ,,, 1ˆ "νR  the moving frame 

on ( ] [ [ ] ] [ ] [ ),2,0,0,0,0ˆ π×π××π×∞+Φ "  which is the image, by Φ̂D  

of the canonical frame { }.,,, 1 kt θ∂

∂

θ∂

∂
∂
∂ "  

Consider a point ( ) ( ).,1ˆ θΦ=θΦ=z  We note that, in this case, we 

have 

,ˆ
1 








θ∂

φ∂

θ∂

φ∂φ=Φ kD "  

where ( )jθ∂

φ∂φ .,resp  is the column vector of components { }11 ,, +φφ k"  

( { }).,,.,resp
11

j

k

j θ∂

φ∂

θ∂

φ∂ +
"  

Moreover, these column vectors are pairwise orthogonal and we have 

( ) .,,2for,sinsin,1 21122
1

2 kjj
j "" =θθ=

θ∂

φ∂=
θ∂

φ∂=φ −  

The inverse of this matrix is then the transpose of the matrix 
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.
22

1

1



















θ∂

φ∂
θ∂

φ∂

θ∂

φ∂
θ∂

φ∂

φ

k

k
"  (13) 

This inverse exists only if π≤θ≤ 20 k  and π<θ< j0  for .1,,1 −= kj "  

Consider a hyperspherical chart ( )θρΦ= ,ˆy  and note { ,,, 1 "
θ∂

∂ν  

}kθ∂

∂  its associated frame field. Let ( )θ′ρ′Φ′=′ ,ˆz  be another 

hyperspherical chart such that its domain intersects the domain of .Φ̂  

Note { }kθ′∂

∂

θ′∂

∂′ ,,, 1 "ν  the moving frame associated to it. So, we can 

write (on the intersection of these domains) 

( ) ( ) .,,
1

j
j

k

j
BA

θ∂

∂θ′θ+θ′θ=′ ∑
=

νν   (14) 

The components of these vectors are actually the components of the 

first column vector of the matrix [ ] .ˆˆ 1 Φ′Φ − DD D  At each point z such that 
,1=ρ  in view of (13), we get 

( )

( )

( )


















φ′
θ∂

φ∂

θ∂

φ∂
=θ′θ•

φ′
θ∂

φ∂=θ′θ•

φ′φ=θ′θ•

∑

∑

∑

+

=

+

=

+

=

.1,

,,

,,

1

12

1

1

1

1

1

1

r
j

rk

rj

j

r
rk

r

rr
k

r

B

B

A

 (15) 

4.2. The evolution of the articulated arm on S  

Coming back to ( ) ,11 ++ ×= nkk SRS  which is considered as a subset 

in ( ) ,21 ++ nkR  let ,,,0, nii "=S  be the canonical sphere in .1
1
+
+

k
iR  
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Recall that the canonical coordinates on 1+k
iR  are denoted by ( ,1

ii zz =  

).,,, 1+k
i

r
i zz ""  Given a point α  in the sphere ,iS  there exists a 

hyperspherical chart ( ) ( )k
iiiiiiiiz θθΦρ=θρΦ=+ ,,,ˆ 1

1 "  defined for ≤0  

π≤θ 2k
i  and ,1,,1,0 −=π<θ< kjj

i "  where ( ) .0,,0 α=Φ "i  So, for 

a given point ( ) ,,,,,, 110 S∈= +ni zzzxq ""  we get a chart ( ,0xId −  

)nΦΦΦ ˆ,,ˆ,,ˆ 10 ""  centered at q, such that its restriction to ,1=ρi  

,,,0 ni "=  induces a chart of S  (centered at q). For ,,,0 ni "=  in a 

neighborhood of each ,1
11
+
++ ∈ k

iiz R  we consider the moving frame =iR  

{ }
ik

ii
i Φ=

θ∂

∂

θ∂

∂
ˆ1 ,,, R"ν  (with notations introduced above). 

Remark 4.2. Given ( ) ,,, 10 C∈= +nxxq "  for ,,,0 ni "=  denote 

by iS
~  the sphere in 1+kR  of center ix  and radius 1. One can put on 1+kR  

the hyperspherical coordinates ( ) .,ˆ iiiii xy +θρΦ=  As 1+ix  belongs to 

,~
iS  on a neighborhood of ,1+ix  we also have the following moving frame 

(again denoted iR ): 

{ }.,,, 1 k
ii

ii
θ∂

∂

θ∂

∂= "νR  

Note that on ,1+ix  the outward normal unit vector of iS
~  is ( )1+ii xν  and 

{ }k
ii θ∂

∂

θ∂

∂ ,,1 "  is a basis .~
1 ixiT S

+
 

Notations 4.1. We define on :S  

(1) ;1and,,1for, 11

1

1
==φφ= +−

+

=
∑ n

r
i

r
i

k

r
i AniA "   

(2) ;0

1

1
0 r

r
k

r x
Z

∂

∂φ= ∑
+

=
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(3) ;,,1for,
11

niBZ j
i

j
i

k

j
i "=

θ∂

∂=
−=

∑   

with 

,,,1for,1
1

1
1

1

1 niB r
i

i

r
i

k

r
i "=φ

θ∂

φ∂
=•

−

−
+

=
∑  

,,,2and,,1for,1

1

1
1

12

1

1
kjniB r

ij
i

r
i

k

r
j
i

i
j
i "" ==φ

θ∂

φ∂

θ∂

φ∂
=•

−

−
+

=

−

−
∑  

(4) ;,,0and,,1for, nmkiX i
m

i
m "" ==

θ∂

∂=   

(5) ;,,0for,
0

0 nmZfX i
i
m

m

i
m "== ∑

=

  

with ,
1

j
m

rj

r
m Af ∏

+=
=  for ,1,,0 −= mr "  and ,1=m

mf  for .,,0 nm "=  

 (6) n∆  the distribution generated by { }k
nnn XXX ,,, 10 "  (with 

previous notations). 

Remark 4.3. For ,,,0 ni "=  consider [ ]iΦ  the column matrix of 

components ( )11 ,, +φφ k
ii "  and [ ] 1−ΦiD  the matrix composed by the last 

k rows of the Jacobian matrix of the application ( ) .1−Φi  Finally, denote 

by [ ] ( [ ])xi ∂
∂

θ∂
∂ .,resp  the column matrix of components ( ),,,1 k

ii θ∂

∂

θ∂

∂ "  

( ( )),,,.,resp 11 +∂

∂

∂

∂
kxx

"  for .,,0 ni "=  So, we can write 

[ ] [ ] [ ] [ ] [ ] .,,1for,and 1
1

1
00 niDZxZ ii

i
t

i
t "=ΦΦ

θ∂
∂=Φ

∂
∂= −

−
−
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With these notations, we have the following result: 

Theorem 4.1. (1) On ,S  the distribution n∆  is the image by Γ  of the 
distribution ,∆  where SC →Γ :  is the diffeomorphism defined at the 
beginning of Subsection 4.1. 

(2) The evolution of the articulated arm of length ( )1+n  is described 
in a chart, by the following controlled system with 1+k  controls: 












































=θ

=θ

=θ

=θ

=θ

=θ

=θ

=θ

φ=

φ=

φ=

θ

θ

−

−

++

++

++

,

,

,

,

,

,

,

,

,

,

,

1
1

1

11
1

11

1
11

1

110

1
11

1
0

1
00

1

2
00

2

1
00

1

k
n

n

v

v

Bv

Bv

Bv

Bv

Bv

Bv

vx

vx

vx

k
n

n

k
nn

k
n

nnn

k
ii

k
i

iii

kk

kk

�

"

�

�

"

�

"

�

"

�

"

�

"

�

�

"

�

�

  

(16) 

where r
n

ir
ni Avv ∏

+=
=

1
 and ( )nvvv k

nn
,,,1 θθ

"  are the ( )1+k  controls of 

the system (16). 
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Moreover, according to Remark 4.2 (or Lemma 5.2), we have 

( )k
nn

vv
θθ

• ,,1 "  are the “tangential components” of the velocity of 

,1+nM  namely, the components, in the canonical basis of ,~
1 nxnT S+  of the 

orthogonal projection of the velocity of ;1+nM   

iv•  is the normal velocity of iM  for all ,1,,1 += ni "  namely, the 

components of the orthogonal projection of the velocity of iM  on the 

direction generated by ( ).1 ii x−ν  

Remark 4.4. Equations of system (16), for ,1=k  are exactly (with 

the same notations) the classical modelling of the car with n trailers ([2], 
[3], [8], [19], [26]). 

Remark 4.5. According to Remark 3.3, for ,2≥k  a point ( ,0xq =  

)11 ,, +nzz "  is singular, if and only if there exists an index ni ≤≤0  

such that ( ) ,0=qAi  which is equivalent to [ ]ii MM ,1−  and [ ]1, +ii MM  

are orthogonal in .iM  In this situation, all the “normal velocity” of jM  

are zero, for .ij >  The set of such points is studied in [25]. 

5. Proof of Theorem 4.1 

5.1. Preliminaries and proof of part (1) 

We will use the notations introduced at the beginning of Subsection 
4.1. We first have the following lemma: 

Lemma 5.1.  Consider, on ,C  the natural decomposition: 

[ ( ) ] ,21 ⊥++ ⊕= CCC TTT nkR  

where ⊥CT  is the orthogonal of .CT  Denote by ∏  the orthogonal 

projection of [ ( ) ] C
21 ++ nkT R  on .CT  
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(1) The family of vector field { ( )( ) }1,,1,
1

+=
∂

∂∏
+

krp
xr

i
"  generates 

the tangent space at C∈p  of the sphere of equation .,,0,0 nii "==Ψ  

(2) On ,C  let L  be the involutive distribution, whose leafs are defined 

by .0=Ψn  The distribution ,∆  is generated by L  and the vector field 

[ ( )].
1

10
ij

n

ij

n

i
AX Z∏= ∏∑

+

+==
 

Moreover, ( )iiZ Z∏=  is tangent to the sphere of equation ,01 =Ψ −i  

.,,1 ni "=  

Proof. At first, for any ,C∈p  note that 

{ },,0,thatsuch ⊥∈∀>=<∈=∆ CE ppp Tvv νν  

so ∆  is nothing but ( ).E∏  

Note that, at each point ( ) ,,, 10 C∈= +nxxp "  the vector ( )p
xr

i 1+∂

∂  

satisfies  

( ) ,0
1

=
∂

∂

+
r
i

s
j x

dx  for any ,1,,1, += ksr "  

and  

.1,,2,,,0 ++= niij ""  

So, the family of vector field { ( )( ) }1,,1,
1

+=
∂

∂∏
+

krp
xr

i
"  generates 

the tangent space at p of the sphere of equation ,0=Ψi  which proves (1). 

The integrable distribution ,F  on ( ) ,21 ++ nkR  generated by { ,
1

r
nx +∂

∂  

},1,,1 += kr "  is contained in ,E  and the distribution ( )EL ∏=  
induced on C  by F  is also integrable and, of course is contained in .∆  In 
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particular, L  is generated by { ( ) }.1,,1,
1

+=
∂

∂∏
+

kr
xr

n
"  From Lemma 

3.1, the vector field [ ] [ ( ) ]r
n

r
n

r
n

k

r
ij

n

ij

n

i x
xxAY

1
1

1

1

1

10 +
+

+

=

+

+== ∂

∂−+= ∑∏∑ Z  is 

tangent to .C  But ∆  is a distribution of constant rank 1+k  and L  is an 
(integrable ) sub-distribution of rank k. It follows that ∆  is generated by 
L  and Y. On the other hand, as Y is tangent to ,C  we have 

( ) [ [ ]] [ ( ) ].
1

1

1

1

1

10
r
n

r
n

r
n

k

r
ij

n

ij

n

i x
xxAYY

+
+

+

=

+

+== ∂

∂−∏+∏=∏= ∑∏∑ Z  

As [ ( ) ]r
n

r
n

r
n

k

r x
xx

1
1

1

1 +
+

+

= ∂

∂−∏ ∑  is tangent to ,L  it follows that ∆  is 

generated by L  and 

[ ].
1

10
ij

n

ij

n

i
AX Z∏= ∏∑

+

+==

 

On the other hand, we have 

 ( ) ( ) ( ).1

1

1
r
i

r
i

r
i

k

r
ii

x
xxZ

∂

∂∏−=∏= +

+

=
∑Z   (17) 

So, from (1), iZ  is tangent to the sphere of equation .01 =Ψ −i  

 

Proof of Theorem 4.1 part (1) 

From Lemma 5.1, in a hyperspherical chart on ,S  the distribution 

( )LK Γ=  is generated by { }.,,1, kiX i
n

i
n "=

θ∂

∂=  Moreover, the 

distribution ( )∆Γ=∆ ∗n  is generated by  

{ }kiX i
n

i
n ,,1, "=

θ∂

∂=  and ( )XXn ∗Γ=0  (with notations of Lemma 5.1). 
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It remains to show that the vectors field niZi ,,0, "=  can be 

written as in Notation 4.1 (2) and (3). 

Fix ( ) S∈= +110 ,,, nzzxq "  and again set ,1 iii zxx += −  for 

1,,1 += ni "  and put on ( ) 21 ++⊂ nkRS  coordinates chart ( ,0xId −  

)nΦΦΦ ˆ,,ˆ,,ˆ 10 ""  centered at q, such that its restriction to ,1=ρi  

,,,0 ni "=  induces a chart of S  (centered at q). In this chart, we have 

( )iiiz θΦ= −1  for .1,,1 += ni "  

So, from (17), using (15), for hyperspherical coordinates ( )iii θρΦ ,ˆ  

and ( ),,ˆ 111 −−− θρΦ iii  we obtain the announced expression of iZ  of in 

hyperspherical coordinates. 

 

5.2. Proof of part (2) 

Taking in account part (1) of Theorem 4.1, the kinematic evolution of 
the articulated arm is a controlled system on ,S  which is exactly (16). 

However, for the completeness of the proof of this result, we must prove 
the interpretation of the control in terms of the component of the velocity 
of .1,,0, += niMi "  

Consider a point ( ) ,,,, 110 S∈= +nzzxq "  and we set again 

+=+ ii xx 1  ,1+iz  for .,,0 ni "=  According to Remark 4.2, the tangent 

space SqT  can be identified with 

,~~~~
110110 0

1
00

1
0 nxx

k
xnxx

k
x nn TTTTTT SSRSSR

++
⊕⊕⊕≡××× ++ ""  (18) 

which is a subspace of the tangent space ( ) ,21 ++ nk
qT R  which can be 

identified with 

.111
0

111
0 110110

++++++
++

⊕⊕⊕≡××× k
x

k
x

k
x

k
x

k
x

k
x nn TTTTTT RRRRRR ""  
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Remark 5.1. Each pair ( ) ,1,,1,, += nizx ii "  can be considered as 

a vector of ,1+k
xiT R  which is equal to ( ).1 ii x−ν  On the other hand, for 

ixni ,,,0 "=  belongs to the sphere iS′
~  centered at 1+− ix  in .1+kR  

Given the hyperspherical coordinate ( ) .,ˆ iiiii xy −θρΦ=′  On a 

neighborhood of ,ix  we also have the following moving frame (again 

denoted by iR ): 

{ }.,,, 1 k
ii

ii
θ∂

∂

θ∂

∂= "νR  

In these conditions, ( )1, +ii zx  can be identified with ( ).ii xν  

Now, in ,1+kR  given any trajectory of an articulated arm, we have 

,1,,1for,1 +=+= − nizxx iii "   (19) 

from our assumptions (see Section 1), we also have 

,1,,1for,11 +== −− nizvx iii "�  (20) 

for some .1 R∈−iv  

In view of (20), the derivative of (19) can be written as 

.1,,1,11 +=+=+= −− nizzvzxx iiiiii "����  (21) 

The pair ( ) ,,,1,, nixx ii "� =  can be considered as vector in 

.1+k
xiT R  Since ,~

1−∈ iix S  taking in account Remark 5.1, using (21), it 

follows that the pair ( ) 1, +∈ k
xii iTxx R�  can be written 

( ) ( ) ( ),,, 11 iiiiiii wxxvxx += −− ν�   (22) 

where ( )ii wx ,  belongs to .~
1−ixiT S  

From Remark 5.1, we have the orthogonal decomposition 

( ) ( ) ( ) .,,0,~, 11 nixZxzzx iiiiiiii "=+><= −+ νν   (23) 
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Taking in account our assumptions and the identification ( )1, +ii zx  
( )ii xν≡  (see Remark 5.1), we also have 

( ) ( ) ( ),,, 1 iiiiiiii xvzxvxx ν== +�   (24) 

for some .R∈iv  

From (23) and (24), we obtain 

( ) ( ) ( ).~,, 11 iiiiiiiiii xZvxzzvxx +><= −+ ν�   (25) 

Finally, comparing (22) and (25), we get 

><= +− iiii zzvv ,11  and ( ) ( ),~, iiiii xZvwx =   for .,,1 ni "=   (26) 

For the pair ( )11, ++ nn xx �  considered as a vector in ,1
1

+
+

k
xnT R  we 

have the orthogonal decomposition 

( ) ( ) ( ),,, 11111 +++++ += nnnnnnn wxxvxx ν�   (27) 

where ( ) .~, 111 nxnn nTwx S
+

∈++  

So, we have proved the following lemma: 

Lemma 5.2. (1) For ,1,,1 −= ni "  we have 

( ) ( ) ( ),~, 11 iiiiiiii xZvxvxx += −− ν�  

where ( ) ( ) ( ) ( )iiiiiii xqAxxZ 1−−= νν  and ( ) .,1 ><= + iii zzqA  

(2) ( ) ( ) ( ),,, 11111 +++++ += nnnnnnn wxxvxx ν�  

for some ( ) .~, 111 nxnn nTwx S
+

∈++  

(3) ( ) .1,,0,
1

−== ∏
+=

niforvAv nj
n

ij
i "  

In this context, iv  (resp., iw ) is called the normal (resp., tangential) 

velocity of .iM  
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Remark 5.2. (1) Via the identification (18) and (19), ( )ii xZ~  can be 

identified with ( )ii zZ  on S  given in Notation 4.1 (2) and (3). 

(2) The function ( )110 ,,, +ni zzxA "  is exactly ( ),,,, 110 +ni xxxA "  

as defined in Lemma 3.1. 

Sketch of the proof of Theorem 4.1 part (2) 

From Lemma 5.2, the following decomposition occurs: 

( ) ( ) ( ),,, 11111 +++++ += nnnnnnn wxxvxx ν�  

where ( ) .~, 111 nxnn nTwx S
+

∈++  

Let ( )k
nn

vv
θθ

,,1 "  be the components of ( )11, ++ nn wx  relative to the 

basis { }k
nn θ∂

∂

θ∂

∂ ,,1 "  of ,~
1 nxnT S

+
 with ,j

n
vj

n θ
=θ�  for .,,1 kj "=  

From (23), we deduce ( ) ( ) ( ),, 11 nnnnnnnn xZxzzx +><= −+ νν  and 

from (26) and (27), we have ( ) ( )., nnnnn xZvwx =  

Then by applying (14), we obtain 

( ) ( ) ( ) ,,,
1

1
1

11 j
n

nn
j

k

j
nnnnnn BxAx

−
−

=
−−

θ∂

∂θθ+θθ= ∑νν  

with 

( ) ( ) ( ) .,and,
1

1
1

1 j
n

nn
j

k

j
nnnn BZAqA

−
−

=
−

θ∂

∂θθ=θθ= ∑  

Moreover, ( ),,11 nn
j

n
j
n Bv θθ=θ −−
�  for .,,1 kj "=  In particular, ( ,1

n
v
θ

 

)k
n

v
θ

,"  are the components of the tangential velocity of 1+nM  and nv  is 

the normal component of the velocity of .1+nM  
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Note that since ( )nnnz θΦ=+1  and ( ),11 −− θΦ= nnnz  the value 

( )qAn  defined in Lemma 5.2 is exactly ( )nnA θθ − ,1  (see (15)). 

The end of the proof of part (2) can be done by induction, using the 
same arguments as before, and taking in account (23), (25), (26), and 
Lemma 5.2 or is a direct consequence of part (1). 

 

6. Proof of Theorem 3.1 

We will see that the distribution n∆  generates actually a special               
k-flag of length ( )1+n  on a ( ) 12 ++nk  dimensional manifold. Let us 
introduce the following notations: 

m∆•  is the distribution generated by { },,,, 10 k
mmm XXX "  for =m  

;,,1 n"  

1+• mD  is the distribution generated by 0
mX  and { jmXX k

jj ≤,,,1 "  

},n≤  for ;,,0 nm "=  

;0 TMD =•  

1+• mE  is the distribution generated by { },,,,1 njmXX k
jj ≤≤"  

for .,,0 nm "=  

Proposition 6.1. n∆  is a special k-flag distribution. More precisely, it 
satisfies the following properties: 

(1) For ,1,,1 += nm "  the distributions mD  and mE  are of 
respective constant dimensions ( ) 12 ++− kmn  and ( ) ;2 kmn +−  

(2) for mEnm ,1,,1 += "  is an involutive sub-distribution of mD  

of codimension 1. Moreover, [ ] ,, 11 mmm DDE ⊂++  for .,,1 nm "=  

Actually, 1+mE  is the “Cauchy-characteristic distribution” of mD  for 
nm ,,1 "=  ([13], [14]); 



MAYADA SLAYMAN and FERNAND PELLETIER 36

(3) [ ] ,, 11 mmm DDD =++  for all ;,,0 nm "=  

(4) TMDDDD mn
n =⊂⊂⊂⊂⊂=∆ + 011 ""  

  ∪"∪"∪  

  .11 EEE mn ⊂⊂⊂⊂+ ""  

Proof of Proposition 6.1 

It is sufficient to show the property (4). The inclusions [ ,1+mE  

] mm DD ⊂+1  for ,0,, "nm =  are an easy consequence of (4) and the 

properties (1), (2), and (3) are always true, according to the definition of 

spaces ,, mm DE  and .m∆  

Denote by 0∆  the distribution generated by { }.,, 1
0

1
0

+∂

∂

∂

∂
kxx

"  

For all ,1,,1 += nm "  we have 

.1
1

1
1

−
+

−
+ ∆+=∆⊕= m

m
m

mm DED  

[ ]11, ++ mm DD  contains the space generated by 1+mD  and the Lie 

brackets [ ],, 0
m

i
m XX  for .,,1 ki "=  We will show by induction that, in 

fact, they are generating [ ]11, ++ mm DD  modulo .1+mD  

For all ,0,, "nm =  we have .0
1

0
mmmm ZXAX += −  It results from 

the definition of ,, ii ZA  and 0
mX  that [ ] .0, 0

1 =−m
i
m XX  So, we have 

[ ] ( ) [ ].,, 0
1

0
m

i
mmm

i
mm

i
m ZXXAXXX += −  

For ,1,,1 += kj "  consider the vector fields 

.1
1

1

1
2

1

11

0
111

r
mr

m

j
m

r
m

m

k

r
m

j
m

j
m XXY −

−

−

−

−=
−−−

θ∂

φ∂

θ∂

φ∂
+φ= ∑  
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If we set ( ) ( ),,ˆ 1111 −−−− θΦρ=θρΦ mmmm  then we have the relation 

[ ] [ ] [ ],ˆ 1
1

11 −
−

−− Φ= mmm XDY  

where the vectors column [ ]1−mY  and [ ]1−mX  have { }1
1

1
1 ,, +

−−
k

mm YY "  and 

{ }k
mm XX 1

0
1 ,, −− "  as components, respectively. It results that 

{ }1
1

1
1 ,, +

−−
k

mm YY "  is a basis of .1−∆m  

For ,,,0 nm "=  we note [ ]mDΦ̂  the Jacobian matrix of ( )mm θρΦ ,ˆ  
( ).mm θΦρ=  

The following decompositions occur: 

,1

1

1

0 j
m

j
m

k

j
m YX −

+

=

φ= ∑  

[ ] .,,1allfor,, 1

1

1

0 nmYXX j
mi

m

j
m

k

j
m

i
m "=

θ∂

φ∂
= −

+

=
∑  

By similar way, for ,ˆ mDΦ  we can show that the family of vector fields 

{ [ ] [ ]},,,,,, 0010
m

k
mmmm XXXXX "  

is also a basis of .1−∆m  This result is also true for .0=m  

Since ,21
m

mm ED ∆⊕= ++  the space [ ]11, ++ mm DD  contains ,2+mE  

all vectors k
mmm XXX ,,, 10 "  and the Lie brackets [ ] ,,, 01 "mm XX  

[ ]., 0
m

k
m XX  Also, all the Lie brackets [ ]0, m

j
r XX  are zero for ,1+= mr  

n,"  and ,,,1 kj "=  since 0
mX  does not depend on variables ,j

rθ  for 

nmr ,,1 "+=  and .,,1 kj "=  The other Lie brackets [ ]i
m

j
r XX ,  are 

zero for nmr ,,1 "+=  and .,,1, kji "=  

Since { [ ] [ ]}0010 ,,,,, m
k
mmmm XXXXX "  is a basis of ,1−∆m  then we 

have  
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[ ] ,, 1
111 m

m
mmm DEDD =∆⊕= −
+++  

which completes the proof of Proposition 6.1 and Theorem 3.1. 

 

Comment 6.1. Given two integers p and m such that ,1 nmp ≤<≤  
we can look for the motion of a “sub-induced arm”, which consists of 
segments of the original arm between 1−pM  and 1+mM  included. We can 

then study the motion of 1−pM  as the motion of the extremity of this sub-

arm for the motion commanded by the segment [ ]., 1+mm MM  We put 

,1+−= pmh  and we write mp,∏  for the canonical projection from 

( ) 11 ++ × nkk SR  onto ( ) 11 ++ × hkk SR  defined as ( ) =∏ +11, ,,, nmp zzx "  

( ),,,,, 11 mppp zzzx "−−  where 1−px  are the Cartesian coordinates of 

.1−pM  

The evolution of the extremity 1−pM  of this articulated sub-arm, 

controlled by the movement of [ ],, 1+mm MM  is a solution of the 

following differential system (with notations of Theorem 4.1): 
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(28) 

It is a controlled system on ( ) ( )111 +−=× ++ pmhhkk SR  

,ˆˆ
1

0
0

i
hi

k

i
h XuXuq ∑

=

+=�  

with controls mvu =0  and ,i
m

vui θ
=  for .,,1 ki "=  

( ),ˆ , qq mp∏=  

.ˆˆˆ
1

1
1

11
10

l
p

l
p

k

l
pp

p
mi

i
m

m

pi
h x

ZetZfZfX
−

−
=

−−
−

= ∂

∂φ=+= ∑∑  

We denote by h∆̂  the distribution generated by 0ˆ
hX  and .,,1 k

mm XX "  
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This comment will be used in a future paper about singular sets of 
special flags and their interpretations in terms of singularities kinematic 
evolution of an articulated arm. 

References 

 [1] J. Adachi, Global stability of special multi-flags, Israel Journal of Mathematics 179 
(2010), 29-56. 

 [2] M. Fliess, J. Levine, P. Martin and P. Rouchon, On differential flat nonlinear 
systems, Proceedings of the IFAC Nonlinear Control Systems Design Symposium, 
Bordeaux, France, (1992), 408-412. 

 [3] F. Jean, The car with n trailers: Characterization of singular configurations,  
ESAIM: Control, Optimisation and Calculus of Variations 1 (1996), 241-266. 

 [4] Z.-P. Jiang and H. Nijmeijer, A recursive technique for tracking control of non-
holonomic systems in chained form, IEEE Transaction on Automatic Control 44(2) 
(1999), 265-279. 

 [5] A. Kumpera and C. Ruiz, Sur l’équivalence locale des systèmes de Pfaff en drapeau, 
Monge-Ampère Equations and Related Topics, Alta Math. F. Sevi, Rome, (1982), 
201-248.  

 [6] A. Kumpera, Flag systems and ordinary differential equations, Ann. Math. Pura ed 
Appl. 177 (1999), 315-329. 

 [7] A. Kumpera and J.-L. Rubin, Multi-flag systems and ordinary differential equations, 
Nogoya Math. J. 166 (2002), 1-27. 

 [8] J.-P. Laumond, Controllability of a multibody mobile robot, Proceedings of the 
International Conference on Advanced Robotics and Automation, Pisa, Italy, (1991), 
1033-1038. 

 [9] J.-P. Laumond, Robot Motion Planning and Control, Lecture Notes on Control and 
Information Sciences, Springer-Verlag, Berlin, 1997. 

 [10] S. Li, Géométrie et Classification des Systèmes de Contact: Applications au   
Contrôle des Systèmes Mécaniques Non Holonomes, PhD Thesis, Rouen, (Février 
2010). 

 [11] R. Montgomery and M. Zhitomirskii, Geometric approach to Goursat flags, Ann. 
Inst. H. Poincaré -AN 18 (2001), 459-493. 

 [12] R. Montgomery and M. Zhitomirskii, Points and Curves in the Monster Tower, 
Memoirs of the AMS, 2009, 

 [13] P. Mormul, Geometric singularity classes for special k-flags, ,2≥k  of arbitrary 
length, Preprint in: Singularity Theory Seminar, S. Janeczko (ed.), Warsaw Univ. of 
Technology 8 (2003), 87-100. 

 



ARTICULATED ARM AND SPECIAL MULTI-FLAGS 41

 [14] P. Mormul, Multi-dimensional Cartan prolongation and special k-flags, H. Hironaka 
et al. (eds.), Geometric Singularity Theory, Banach Center Publications 65 of Math., 
Polish Acad. Sci., Warsaw, (2004), 157-178. 

 [15] P. Mormul, Special 2-flags, singularity classes and associate polynomial normal 
forms, Contemporary Mathematics and its Applications 33 (2005), 131-145, (in 
Russian). 

 [16] P. Mormul and F. Pelletier, Special 2-flags in lengths not exceeding four: A study in 
strong nilpotency of distributions, Preprint, Warsaw, 2006. 

 [17] R.-M. Murray, Trajectory generation for a towed cable flight control system, Proc. 
IFAC World Congress, San Francisco, (1996), 395-400.  

 [18] W. Pasillas-Lépine and W. Respondek, Applications of the geometry of Goursat 
structures to non-holonomic control systems, Proceedings of the IFAC Nonlinear 
Control Systems Design Symposium, Enschede (The Netherlands), (1998), 789-794. 

 [19] W. Pasillas-Lépine and W. Respondek, On the geometry of Goursat structure, 
ESAIM: Control, Optimisation and Calculus of Variations 6 (2001), 119-181. 

 [20] W. Pasillas-Lépine and W. Respondek, Contact systems and corank one involutive 
sub-distributions, Acta Appl. Math. 69 (2001), 105-128.  

 [21] W. Pasillas-Lépine and W. Respondek, Nilpotentization of the kinematics of the                    
n-trailer system at singular points and motion planning through the singular locus, 
International Journal of Control 74 (2001), 628-637. 

 [22] P. Rodriguez, L’algorithme du Charmeur de Serpents, PhD Thesis, Genève, 2006. 

 [23] P. Rouchon, Motion planning, equivalence, infinite dimensional systems, Int. J.  
Appl. Math. Comput. Sci. 11(1) (2001). 

 [24] K. Shibuya and K. Yamaguchi, Drapeau theorem for differential systems, 
Differential Geometry and its Application 27(6) (2009), 793-808.  

 [25] M. Slayman, Bras Articulé et Distributions Multi-drapeaux, Université de Savoie, 
Laboratoire de Mathématiques (LAMA), PhD Thesis, 2008. 

 [26] O. J. Sordalen, Conversion of the kinematics of a car with n trailers into a chain 
form, IEEE Transactions on Automatic Control on Robotics and Automation (1993).  

 [27] K. Yamaguchi, Contact geometry of higher order, Japanese J. Math. 8 (1982),      
109-176. 

g 


