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Abstract

In this paper, we give a kinematical illustration of some distributions called
special multi-flags distributions. Precisely, we define the kinematic model in

angular coordinates of an articulated arm constituted of a series of (n +1)

segments in RF*!

this model.

and construct the special multi-flag distribution associated to

1. Introduction

The kinematic evolution of a car towing n trailers can be described by
a Goursat distribution on the configuration space M = R? x (S')*™1. A
Goursat distribution is a rank-(/ —s) distribution on a manifold M of

dimension [ > 2 + s, such that each element of its flag of Lie squares,
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D=D°c D' =[D*, D°]c - c D' =[D/,D/]c - c D’ =TM

is of codimension 1 in the following one.

Since 2000, Goursat distributions were generalized in many works
([7], [12], [13], [14], [15], [20]). Special k-flags (k>2), which are

considered to be extensions of Goursat flags, were defined in [7], [14], and
[20] in several equivalent ways. All these approaches can be reduced to
one transparent definition (see [1], [24]). A special k-flag of length s on a
manifold M of dimension (s + 1)k + 1 is a sequence of distributions

D* c D' =[D%, D*lc--c D/t =D/, D/ ]c-c D =TM,

such that the respective dimensions of D®, D', ..., D° are k +1,
2k +1, -+, (s+1)k+1, for j=1,--,s-1, the Cauchy-characteristic

sub-distribution L(D’) of D’ is included in D’*' of constant corank
one, L(D?) = 0, and there exists a completely integrable sub-distribution
F < D' of corank one in D'. The integer k is called width.

The purpose of this work is to show that the problem of modelling car
towing n trailers can be generalized to the problem of modelling
kinematic problem for an “articulated arm” constituted of (n +1)

Rk+1

segments in , such that to this model is naturally associated a

special k-flag.

In the following, an “articulated arm” of length (n +1) is a series
of (n+1) segments [M;, M;,;],i=0,-,n-1, in R*!  keeping
a constant length [;, and the articulation occurs at points M;, for
i1=1,-, n.

It is proposed to study the kinematic evolution of the extremity M

under the constraint that the motion is controlled by the evolution of the

segment [M,, M,,;], and that the velocity of each point M;,
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i =0, -, n, is colinear with the segment [M;, M;,;]*. In this paper, we
define precisely the kinematic model in angular coordinates of an

articulated arm, and we construct the special multi-flag naturally

assoclated to this model.

For k =1, an articulated arm of length n is a modelling problem of a

car with n trailers: In this model, the car is symbolized by the segment

[M,, M,.;] (see [3]). When the number of trailers is large, this problem

can be considered as an approximation of the “nonholonomic snake” in

the plane (see [23], for instance). For & > 1, we can also consider a “snake”

in RF*1 (see [22] for a complete description). Again, an articulated arm of
length n, for n large, can be considered as a discretization of a

Rk+1

nonholonomic snake in . For instance, in RS, some problems of

“towed cable” can model in such a way ([17], [23]).

In Section 2, we recall the classic context of the car with n trailers
and its interpretation in terms of Goursat distribution. The articulated
arm system is developed in Section 3 and also we show how to associate a
special multi-flags to such a system in Cartesian coordinates. In Section
4, we gives a version of the kinematic evolution of an articulated arm in
terms of angular coordinates, and we get a generalization of the classical
model of the car with n trailers. The last two sections are devoted to the

proofs of the results.
2. The Car with n Trailers

In this section, we will recall some fundamental results about the
system of the car with n trailers and its relation with the Goursat
distribution. All these results are now classical and can be found in a

large number of papers as [2], [3], [11], [18], [26] and many others.

1 such a system is also studied in [10] and is called a “n-bar system”.
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2.1. Notations and equations

A car with n trailers is a configuration of (n +1) trailers in the

Rz-plane, denoted by M, M, ---, M,,, and keeping a constant length

n»
between each two trailers. It is proposed to study the kinematic evolution

of the trailer M, with the constraint that the motion is controlled by the
evolution of M,, which symbolize the car. We will use the same

representation as Fliess [2] and Sordalen [26], where the car is
represented by two driving wheels connected by an axle. It is a kinematic
problem with non integrable constraints (i.e., a nonholonomic system) due
to the rolling without sliding of the wheels. The configuration space of the

system 1is characterized by the two dimensional coordinates of M, and
(n +1) angles, whereas there are only two inputs, namely, one tangential

velocity and one angular velocity, which represent the action on the
steering wheel and on the accelerator of the car. Consider the system of

the car with n trailers and suppose that the distances R, between the

different trailers are all equal to 1. We choose as a reference point of a

body M, _, the midpoint m, between the wheels; its coordinates are
denoted by x, and y, in a given Cartesian frame of the plane; 6, is the
angle between the main axis of M,,_, and the x-axis of the frame. So, the
set of all positions of the car with n trailers is included in a 3(n +1)-
dimensional space. This system is submitted to 2n holonomic links, which

give, in the previous space, the 2n following equations:

X, —Xp_1 = €080,_q,

Yr = ¥p-1 =sIn0,_;. (1)

The configuration space of this problem is a submanifold of dimension

(n + 3), which is parameterized by q = (xq, y9, 0¢, .-, 0,, ), where

e (xg, yo) are the coordinates of the last trailer M,,.
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¢ 0, is the orientation of the car (the trailer M) with respect to the
x-axis.
©0,,0<r<n-1, is the orientation of the trailer (n-r) with

respect to the x-axis.
The configuration space can thus be identified to R? x (S')**1.

The velocity parameters are %, g, 0g, -, 0,,. There are only two
inputs, namely, the “angular velocity” w,, and the “tangential velocity”
v,, of the midpoint of the guiding wheels associated to the action of the
car (see [3]).

Assume that the contacts between the wheels and the ground are

pure rolling, it is then submitted to the classical nonholonomic links
X, sin 0, — y,.cos 0, = 0. @)
There are (n + 1) kinematic equality constraints, one for each trailer.
In order to establish these constraints, we can represent the points m,., r =
0,--,n, in the complex plane, ie., m, = x, +iy,. The geometric
constraint between two consecutive trailers is written as

0,1
>

m, =m,_1+e for r=0.

By induction, we have the following equation:
r-1
m, = mg + Zelel. (3)
=0
The kinematic constraint of M,,_, is
m, = kreier,
which is equivalent to

(0 ) = 0,



14 MAYADA SLAYMAN and FERNAND PELLETIER

where Z(z) denotes the imaginary part of z. Combining this
characterization with the derivative of (3) and using the linearity of Z,

we obtain the kinematic constraints

. . . r-1.
- Xo sin 0, + yg cos 0, +Zj=09j cos(0; -0,)=0, r=0,-,n (4

Combining m, = X,eie’ with the derivative of

My = m,[* =1,
we obtain
A =Apy1(cos0,,, —cos0,),
and by induction
hp = A c08(B, —0,1)-+ cos(B,41 = 6,),
S0
n
iy = D ([ ] cos(0; = 0,-1))e™,
j=r+1
where A, = v, isthe tangential velocity of the car M.

The evolution of the system of car with n trailers can be given by the

following controlled system with two controls v, (“tangential velocity”)

and w,, (“normal velocity”) of M:

xo = Vg Cos 90,
yo =g sin 60,
90 =U sin(91 — 90),

®)

O = Vpy1 8in(0,41 — 6,.),

én—l =Uy Sin(en - en—l)r

0, =w,.
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The “tangential velocity” v, of the body M,,_, is given by

n

v, = H cos(0; —0;_1)vy.

Jj=r+l1
2.2. Goursat flag

Given a smooth distribution D on a manifold M, we will use the
standard notation [D, D] to denote the smooth distribution generated by

the vector fields tangent to D and the Lie brackets [X, Y], of any pair
(X, Y) of vector fields tangent to D.

Definition 2.1. A Goursat flag of length s on a manifold M of
dimension [ > s + 2 is a sequence of distributions on M

DPcDl'c.cDPcD?cD' D’ =TM, s>2 (F)
satisfying the following Goursat conditions:

(1) corangDi =i, 1=12 --,s,

@ D' =[D', D'], i=12 s )

Each Di(p) is a subspace of T,M of codimension i, for any
point p € M. It follows that D”l(p) is a hyperplane in Di(p), for any
i1=0,1,,s-1and p e M.

Definition 2.2. We call any distribution D' of corank i > 2 in a
Goursat flag (F) a Goursat distribution.

To each flag (F) of Goursat distributions, we associate a flag of
“Cauchy-characteristic” sub-distributions

L(D?)c L(D*Y) < - « L(D?) = L(D?) = L(D"), (L)

where L(D) is the sub-distribution of D generated by the set of vector
fields X tangent to D such that [X, Y] is tangent to D for all Y tangent to
D. L(D) is called the Cauchy-characteristic distribution of D.
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Lemma 2.1 (Sandwich lemma [11]). Let D be any Goursat distribution
of corank s > 2 on a manifold M, and p be any point of M. Then

L(D)(p) = L(ID, D])(p) = D(p),
with dim L(D)(p) = dim D(p) - 2, dim L([D, D])(p) = dim D(p) — 1.

It follows a relation between the Goursat flag and its flag of Cauchy-
characteristic sub-distributions

D c D' <c...c D) < D? < D' < D°
U U U U
L(D®) < L(D*') c L(D*2)c .- < L(D?) < L(DY).

Each inclusion here is a codimension one inclusion of subbundles of
the tangent bundle. L(Di) is an involutive regular distribution on M of

codimension i + 2.

2.3. Goursat flag associated to the car with n trailers

Let
n
= T cost0; -0,-0),
j=r+1
and v, = f'v, forr =1, -, n-1.

The motion of the system associated to the car is then characterized
by the equation

¢ = w,Xn(q) + v, X2(q).

It is a controlled system with controls v,, and w,, (v, is the tangential
velocity and w,, is the angular velocity as we have already seen at the

beginning of the section). Each trajectory of the kinematic evolution of the

car towing n trailers is an integral curve of the 2-distribution, on

R? x (S')"*, generated by
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0

1_
X"‘aen’

X2 = cos 0o/l % + sin 0, f2 % + sin(6; - 0 )" % o4 sin(0, — 0, 4 )%.
o

The distribution generated by {X{', XJ }, naturally associated to the

system of the car with n trailers, is a Goursat distribution.
3. Articulated Arm

The purpose of this section is to construct a distribution A, of
dimension k +1, naturally associated to an (n+1) articulated arm,

which generates a special k-flag of length (n +1) on the configuration

space C = RF « (Sk )n+1. Moreover, the kinematic evolution of this arm
is an integral curve of A,. We begin by recalling the context of special

multi-flag in the formalism of [1], [14].
3.1. Special multi-flags
A special k-flag of length s is a sequence
D=D°cD'c..cDccD cD®=1M,

of distributions on a manifold M of dimension (s + 1)k + 1, which satisfies

the following conditions:
G) D' =[D/, D'].
Gi) D%, D7, ..., D/, ..., D', D° are of respective ranks k +1, 2k + 1,

oy sk+ 1, (s+1)k+1.

(iii) Each Cauchy characteristic sub-distribution L(Dj ) of D/ is a
sub-distribution of constant corank one in each D’ 1 for j=1-,s-1,

and L(D?) = 0.

(iv) There exists a completely integrable sub-distribution F < D' of

corank one in D',
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Remark 3.1. It should be remarked that the covariant

sub-distribution F c D' is uniquely determined by D' itself. This

covariant sub-distribution F'is completely described in [1] and [24], where
it is defined in terms of the annihilating Pfaffian system (D')* < T*M

([7]). For a complete clarification on this fact, see [16].

Remark 3.2. In the following, we mean by a special multi-flag

distribution all distribution generating a special multi-flag.

From the definition above, we obtain the following sandwich diagram:
D¢ < D' c.oc DI coc D'cD’=TM
U U U U
LDY) c (D¥2%) <c--c LIDITY) c..cF.

All vertical inclusions in this diagram are of codimension one, while
all horizontal inclusions are of codimension k. The squares built by these

inclusions can be perceived as certain sandwiches, i.e., each “subdiagram”
number j indexed by the upper left vertices D/
D/ < D!
U U
LD’y « L(D'7?)
is called sandwich number j.

We can read the length s of the special k-flag by adding one to the
total number of sandwiches in the sandwich diagram.

Remark 3.3. In a sandwich number j, at each point x € M, in the
(k +1) dimensional vector space D’~' / L(D’71)(x), we can look for the
relative position of the % dimensional subspace L(D’72)/L(D’7)(x)

and the 1-dimensional subspace D’ / L(D/™)(x) :
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either L(D’72)/ L(D’ ) (x)® D/ | L(D’ ) (x) = D/  L(D/71) (),
or D) | L(D'™V)(x) = L(D/72)) L(D'™") (x).

We say that x € M 1is a regular point, if the first situation is true in each

sandwich number j, for j =1, .-, s. Otherwise, x is called a singular

point.

The set of singular points in the context of an articulated arm is
studied in [25] and these results will be published in a future paper.

3.2. Special multi-flags and articulated arm

The space (R**1)""2  will be written as the product RE! x...
Rf*l o REFL Let x; = (x}, -, xf*l) be the canonical coordinates on
the space Rf“, which is equipped with its canonical scalar product

<, >. (Rk+1 )n+2 1s equipped with its canonical scalar product too.

Consider an articulated arm of length (n +1) denoted by (M, ---,
M,,.1). In this paper, we assume that the distances /; are all equal to 1.

On (R**1)"*2 consider the vector fields

k+1
Z; = E (x{+1—xir)i, fori =0, -, n. (6)
ox!
r=1 2

From our previous assumptions (see Section 1), the kinematic evolution of
the articulated arm is described by a controlled system

n k+1 P
q = Zuizi + Zun+r —, (7
i=0 r=1 0xp 41

with the following constraints:

[x; —x;.1]| =1, for i = 0, -+, n (see [10], Chapter 2).

Consider the map W¥;(xq, -+, xp41) = |l%; — xi+1||2 —1. Then, the

configuration space C is the set
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{(xg, -, xp41), such that ¥;(xq, -+, x,,41) =0 for i =0, ---, n}. (8
For i =0, ---, n, the vector field

k+1

r r 0 0
Ni= (=D
r=1

], )

Oxfy,y  Oxf
is proportional to the gradiant of W;. So, the tangent space T,C 1s the

subspace of Tq(]Rk+1 Y**2, which is orthogonal to A/;(q) for i = 0, -+, n.

Denote by £ the distribution generated by the vector fields

0 0
(Zos -y Zpy —— ) o, —— 1.
1 k+1
axn+1 6xnil

Lemma 3.1. Let A be the distribution on C defined by A(q) =
T,CNE. Then A is a distribution of dimension k +1 generated by
n n+l P
(%ps1 —xrrL)[Z H AjZi]+—— forr=1,k+1,
i=0 j=i+l OxXp 41
where Aj(q) =< N j(q), Nj_1(q)>=-<Z(q), Nj1(q)> for j=1,---,n
and A, =1

Proof. Any vector field X tangent to £ can be written as

n
0
X = Z?»LZL + Z}J.r 5xr .
1=0 r=1 n+l

On the other hand, on C, a vector fields X is tangent to C, if and only
if X is orthogonal to the vector fields N, --+, N,,.

For i=0,--,n-1, each relation < X, N/; >=0 1is reduced to

< Xjp1Z41 + M Z;, N; >= 0, which is equivalent to

Ai = Nip1Ais- (10)
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Similarly, the relation < X, N; >= 0 induces

k+1

Ap = Zur(x;zﬂ - xfz)’ (11)
r=1
n
and from (10) and (11), we get A; = H A, fori=0,--,n-1. O

Jj=i+1

The properties of A are summarized in the following result (see also
[10], Chapter 2):

Theorem 3.1. On C, the distribution A satisfies the following

properties:
(1) A is a distribution of rank k + 1.

(2) The distribution A is a special k-flag on C of length (n +1).

The first part of Theorem 3.1 is a direct consequence of Lemma 3.1.
Part (2) will be proved in Section 6 in terms of hyperspherical
coordinates.

4. The Evolution of the Articulated Arm in a
System of Angular Coordinates

Given an articulated arm (Mg, -+, M,.,;) in R*', we will show

that the constraint controlled system (7) can be written in the same way
as (5) in an adapted system of angular coordinates with (k + 1) controls,

namely, v,, (the “normal” velocity of M,, ;) and the £ components of the

“tangential velocity” of M, ,; (Theorem 4.1).
4.1. Hyperspherical coordinates
The following map:
T2, 21, 0, &, w0, Xpy1 ) = (%0, %1 = %0, % = X1, Xpy1 — %),
implies a global diffeomorphism of (R**1Y**2 into itself and I'(C) =

R*¥*1  (s# Y"1 where S* is the canonical sphere in R*!. In this
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representation, the canonical coordinates on (R**1)"*2 = p((RF*1)**2)

will be denoted by (xg, 21, -, 2, **» Zp+1) S0 that T is given by

x9 = x9 and z; = x;,1 —x;, for i =0, ---, n. Via this global chart, each
point q = (xg, X1, -+, Xj, =+, X,41) € C can be identified with (xq, 21,
ey Zjy s Zpol) € RE+L & (Sk)”ﬂ, for i=0,---,n and C can be

identified with S = RF+1 x (S* )"+,

We will put on (Sk )n+1 charts given by hyperspherical coordinates.

We first recall some basic facts about this type of coordinates.
The hyperspherical coordinates in R**! are given by the relations

zb = pp'(0) = psin 0! - sin %! sin 0%,
22 = pp%(0) = psin O - sin 0% 1 cos 0F,
3 3 : 1 : k-2 k-1
z° = 0) =psin® ---sin 6 cos 0",
po°(0) = p 12)

2" p¢k(9) = psin 0" cos 02,

with p?2 = (2" )2 + -+ ("), 0< 0" <2r, and 0< 0/ < for 1</ <
k-1

We consider ®(p, 6) = pd(0) = z, the application from ]0, +oo[ x
[0, n]x - x [0, ©] x [0, 2n] to R**1,

Remark 4.1. The previous expression uses the “geographical” version

of hyperspherical coordinates. An another version, maybe more usual, can
be obtained by taking g— 0* instead of 0% and then, permuting the

functions sine and cosine in each formula. However, our choice is
motivated by the following fact: The evolution of the articulated arm of
length (n +1) written in a such chart, (see (16)) gives exactly the system

(b) for n = 1.
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The Jacobian matrix D® of & is:

sin 0! - sin 01 sin 0* p cos ol ..-sin0F 1sinoF ... psin ol -.-sin 0F 1 cos 0F
sin 0! ---sin 6% cos 0% pcos91~~sin oF1coso® ... — psin ol ...sin 01 sin 6%
cos 0! — psin ol 0 0

k-1 o
It is well known that det(Dd)(p, 6) = (- 1)[k+1/2](p)kH( sin 0% ).
i=1

It follows that D& is invertible only for 0 < 0% < 2n and 0<@/ < n, for
j=1-,k-1.

In the sequence, we note R = {v, i, . 0 } the moving frame
1 k
09 00
on ®(]0, +oo[ %[0, n]x---x ]0, n[x]0, 2r[), which is the image, by Dd
of the canonical frame { i, L, e 0 3
ot ol o0*

Consider a point z = ®(0) = &(1, 8). We note that, in this case, we

have
A 0 0
Db = (q) ;bl %j,
00 00
o\ . 1 k+1
where ¢ (resp., — ) is the column vector of components {¢~, ---, ¢""}
00
(resp., {L R A b.

o A Y

Moreover, these column vectors are pairwise orthogonal and we have
o2 = 1222 =1, ) L2 P2 = (sin0! o sin 0/, for =2, o, B
00 00/

The inverse of this matrix is then the transpose of the matrix
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09 0
o0 o0k
. 13
¢||6—¢||2 |20 2 o
0! o0k

This inverse exists only if 0 < 0% <27 and 0 < 0/ < x for j=1,-, k-1.

Consider a hyperspherical chart y = ®(p, ) and note {v, il’ -
00

9

00"

hyperspherical chart such that its domain intersects the domain of ®.

Note {v/, il, e ik} the moving frame associated to it. So, we can
o0’ 00’

write (on the intersection of these domains)

its associated frame field. Let 2z = ®'(p',0') be another

k
v = A0, 0 + ZBJ (0, 07— (14)
~ a0/

The components of these vectors are actually the components of the

first column vector of the matrix [D®]! o Dd'. At each point z such that
p =1, in view of (13), we get

k+1
.« A0, 0) = Y 44",
=1
rk+1 8(|)r
« B'(0, 0) = Zﬁqﬂ, (15)
r=1
k+1
; 1 o¢"
J "y — YN
«B/(0,0) = ||a;*’_||2;69j¢ .
o0’

4.2. The evolution of the articulated arm on S

Coming back to S = R¥* x (S#)"*1 which is considered as a subset

in (Rk+1 )n+2, let S;,i=0,--,n, be the canonical sphere in R?:ll.
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Recall that the canonical coordinates on Rf 1 are denoted by z; = (z},

yzh e zi}‘“rl ). Given a point o in the sphere S;, there exists a
hyperspherical chart z;,; = ®;(p;, 8;) = p;®;(6}, -, Of) defined for 0 <

9? <2n and 0 < 9{ <m j=1,--, k-1, where ®;(0, ---, 0) = a. So, for

a given point q = (xq, 21, "+, 2;, =", Zp41) € S, we get a chart (Id — x,
é)o, R Ci)l, TN é)n) centered at g, such that its restriction to p; =1,
i =0, -, n, induces a chart of S (centered at q). For it =0, ---, n, in a
neighborhood of each z; ; € Rf:ll, we consider the moving frame R; =
0 0 . . .

{v;, T T } = R4, (with notations introduced above).

00; 0, ¢

Remark 4.2. Given ¢ = (xq, ==+, x,41) € C, for i =0, ---, n, denote

by gi the sphere in R**! of center x; and radius 1. One can put on RF*+1

the hyperspherical coordinates y; = ®;(p;, 0;) + x;. As x;,; belongs to

S;, on a neighborhood of x;,;, we also have the following moving frame
(again denoted R;):

o o
i,

R. = L
‘ oot = ook

Note that on x;,;, the outward normal unit vector of gi is v;(x;4;) and

il, . ik} is a basis Txi+1§i.
oot o0

Notations 4.1. We define on S:
k+1

1) A4; = Z(I)ir_ld){, fori=1,--,nand 4,1 =1;
r=1

k+1
a .
r b

@) Zo = D 46—
r=1
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k

i 0 .
®) Z; = ZBLJ pr fori=1,--, n
j=1 i-1
with
k+1
oy .
e B! = Zhd){, fori=1,--,n,
o0}
r=1 -1
) k+1 r
e B/ = 1 Zad)l._l ¢f, fori=1,---,nand j=2, -,k
t ob;_ J
i-1 12 “= 50/
EEV
907,

(4) X,‘n :i., fori=1-,kand m =0, -, n;
00"

m

m
(5) X,?l = Z}%Zi, for m =0, ---, n;
1=0

m
with f = H Aj, for r =0,--,m—-1, and f' =1, for m =0, -+, n.

Jj=r+l
(6) A, the distribution generated by {X°, XL, -, X*} (with
previous notations).
Remark 4.3. For i =0, ---, n, consider [®;] the column matrix of

components (¢}, -, ¢f’+1) and [D®; ]! the matrix composed by the last

k rows of the Jacobian matrix of the application (®; )"L. Finally, denote

by [i ] (resp., [i ]) the column matrix of components L, - 9 ,
09; 0x 00} o0”
l 2
0 0 . .
(resp., (—1, = )), for i =0, -+, n. So, we can write
Ox 0x

0
;1

0 _ .
Zy =! [a][cbo]and Z; =" 1[D®;_; ] 1[<1)i], fori=1,--, n.



ARTICULATED ARM AND SPECIAL MULTI-FLAGS 27

With these notations, we have the following result:

Theorem 4.1. (1) On S, the distribution A, is the image by T' of the
distribution A, where T : C — S is the diffeomorphism defined at the
beginning of Subsection 4.1.

(2) The evolution of the articulated arm of length (n +1) is described

in a chart, by the following controlled system with k +1 controls:

1 1

X" = Ugdp,

P 2

x” = vobp,

. k+1 k+1

X - UO(I)O )
1 1

00 = v By,

k k

00 = v By,

Al 1
0; = v B,

ef = Ui+lBl'}11’
é]ﬁ—l = vnBrlw
éﬁ—l = UnBr}f’
6L = vy
i = vy

(16)

n
where v; = v, H A, and (v

r=i+1

the system (16).

1, U, Uy, ) are the (k+1) controls of
0y 0y,
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Moreover, according to Remark 4.2 (or Lemma 5.2), we have

o (v . Uek) are the “tangential components” of the velocity of
n

o
M, .1, namely, the components, in the canonical basis of Txn+1§n, of the
orthogonal projection of the velocity of M, 1;

e v; is the normal velocity of M; for all i =1, ---, n+1, namely, the

components of the orthogonal projection of the velocity of M; on the

direction generated by v;_1(x; ).

Remark 4.4. Equations of system (16), for & =1, are exactly (with

the same notations) the classical modelling of the car with n trailers ([2],
(3], [8], [19], [26]).

Remark 4.5. According to Remark 3.3, for k£ > 2, a point ¢ = (x,
21, ***, 2,41 ) 1is singular, if and only if there exists an index 0 <i <n
such that A;(q) = 0, which is equivalent to [M;_;, M;] and [M;, M; 4]
are orthogonal in M;. In this situation, all the “normal velocity” of M ;

are zero, for j > i. The set of such points is studied in [25].

5. Proof of Theorem 4.1

5.1. Preliminaries and proof of part (1)

We will use the notations introduced at the beginning of Subsection

4.1. We first have the following lemma:

Lemma 5.1. Consider, on C, the natural decomposition:
[T(RkJrl )n+2 ]‘C — TC ® TCJ_,

where TC* is the orthogonal of TC. Denote by [l the orthogonal

projection of [T(RF+1y 2 ]\C on TC.
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(1) The family of vector field {TI( )p), r=1,-, k+1} generates

-
Xi+1

the tangent space at p € C of the sphere of equation ¥; = 0,i =0, ---, n.

(2) On C, let L be the involutive distribution, whose leafs are defined
by ¥, =0. The distribution A, is generated by L and the vector field

n n+l

X =0 [1 4 1zl

1=0j=1+1

Moreover, Z; =TI(Z;) is tangent to the sphere of equation ¥;_; = 0,

Proof. At first, for any p € C, note that
A, ={v € £, such that < v, v >=0, Vv € TpCL},

so A is nothing but [1(€).

Note that, at each point p = (xg, ---, x,,1) € C, the vector ()
0%

satisfies

s 0

dx’( )=0, forany r,s =1, .-+, k+1,
J r
Xi+1

and

j=0, 0 i 42 o, n+l.

0

So, the family of vector field {I1( )p), r=1,--, k+1} generates

r
Xi+1

the tangent space at p of the sphere of equation ¥; = 0, which proves (1).

, generated by { 0 ,

r
OxXp 41

r=1,--,k+1}, is contained in &, and the distribution £ = [1(&)

The integrable distribution F, on (R**!)y**2

induced on C by F is also integrable and, of course is contained in A. In
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particular, £ is generated by {II( - ), =1,--, k+1}. From Lemma
Xn+1
n n+l k+1
3.1, the vector field Y = [Z H Az ]+ [Z (x)he1 — %) ? ] is
=0 j=i+1 r=1 0xp 41

tangent to C. But A is a distribution of constant rank 2 +1 and £ is an
(integrable ) sub-distribution of rank k. It follows that A is generated by
L and Y. On the other hand, as Yis tangent to C, we have

n_ n+l k+1
0
Y =Tv) =D [] 4 M2+ 10D (xha - xn)——1
i=0 j=i+1 r=1 0% 41
k+1
As H[Z(xfwl -x5) ] is tangent to £, it follows that A is
r=1 Xn+1
generated by £ and
n n+l
X=> [T 4niz:.
1=0 j=i+1

On the other hand, we have

k+1
0
Z; =11(2;) = i1 —xf )11 : 17
();(x1 x)(ax{) (17)

So, from (1), Z; is tangent to the sphere of equation ¥;_; = 0.

Proof of Theorem 4.1 part (1)

From Lemma 5.1, in a hyperspherical chart on S, the distribution

K =T(£) is generated by {X! = ii’ i=1,--, k}. Moreover, the
00

n

distribution A, = I,(A) is generated by

(X} = ii’ i=1,--, k) and X0 = I,(X) (with notations of Lemma 5.1).
07
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It remains to show that the vectors field Z;,i =0, .-, n can be

written as in Notation 4.1 (2) and (3).

Fix q =(xg, 21, ", 2p41) € S and again set x; = x;_; +2;, for
i=1--,n+1 and put on S < (R*1)"*2 coordinates chart (Id — x,
Cf)o, e, Ci)l, e Cf)n) centered at g, such that its restriction to p; =1,
i =0, -, n, induces a chart of S (centered at ). In this chart, we have

z; =®;_1(0;) fori =1,--, n+1.

So, from (17), using (15), for hyperspherical coordinates ®;(p;, ;)

and ®;_1(p;_;, 0;_1), we obtain the announced expression of Z; of in

hyperspherical coordinates.

5.2. Proof of part (2)
Taking in account part (1) of Theorem 4.1, the kinematic evolution of
the articulated arm is a controlled system on S, which is exactly (16).

However, for the completeness of the proof of this result, we must prove
the interpretation of the control in terms of the component of the velocity
of M;,i=0,---,n+1.

Consider a point ¢ = (xg, 21, """, 2,41) € S, and we set again
X;41 = X; + 2541, for i =0, ---, n. According to Remark 4.2, the tangent

space T,S can be identified with

Ty RE™ x Ty So x o x T, T R{" T, Sy @ @T, §, 18

n+lSn =

which is a subspace of the tangent space Tq(RkJr1 )n+2, which can be

identified with

TxORé+1 % Tlek+1 X oeee X T Rk+1 = TxOR]0€+1 ('B Tx1Rk+1 ('B ('B Txn+1Rk+1~

Xn+1
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Remark 5.1. Each pair (x;, z;), i =1, -+, n + 1, can be considered as

a vector of T, , which is equal to v;_;(x;). On the other hand, for

i=0,--,n,x; belongs to the sphere S; centered at —x;,; in R+

Given the hyperspherical coordinate y; = ®;(p;, 0;)-x;. On a
neighborhood of x;, we also have the following moving frame (again

denoted by R;):

0 0
Ri={vi, — }

oot a0k
l

In these conditions, (x;, z;,1) can be identified with v;(x; ).
Now, in Rk+1, given any trajectory of an articulated arm, we have
x; =%, +2;, fori=1--,n+1, (19)
from our assumptions (see Section 1), we also have
X1 =0v;12;, fori=1,--,n+1, (20)
for some v;_; € R.
In view of (20), the derivative of (19) can be written as
X, =%, +2 =012 +%2, i1=1-,n+1l. (21)
The pair (x;, x;),i=1,--,n, can be considered as vector in
TxiRkH. Since x; € S; ;, taking in account Remark 5.1, using (21), it

follows that the pair (x;, x;) € TxiRk+1 can be written
(x5, %) = viqvia (%) + (x4, wi), (22)
where (x;, w;) belongs to Txigi,l.
From Remark 5.1, we have the orthogonal decomposition

vi(a;) =< 2141, 2 > Vi (%) + Zi(x;), i=0,-, n. (23)
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Taking in account our assumptions and the identification (x;, z;,1)

= v;(x; ) (see Remark 5.1), we also have
(x5, %) = vi (%, 2i41) = Vi (%), (24)
for some v; € R.
From (23) and (24), we obtain
(x5 %) = V5 < 23415 2 > Vi1 () + 0;Z5(x;). (25)
Finally, comparing (22) and (25), we get
Vi1 =V <21, 2 > and (x;, w;) = v;Z;(x;), fori=1,,n  (26)
For the pair (x,,;, ¥,,1) considered as a vector in TanRkJ’l, we
have the orthogonal decomposition
(Xni15 Tpy1) = VpVn(Xpi1) + (Xn41, What), 27)

where (2,1, wWpi1) € Ty Sy

So, we have proved the following lemma:

Lemma 5.2. (1) For i =1, ---, n — 1, we have
(%;, %) = v_qviq (%) + v Z(%;),
where Z;(x;) = vi(x;) - Aj(@v;_1(x;) and A;(q) =< 2441, 2; > .
) (xn+1’ xn+1) = UnVn(xn+1 ) + (xn+1’ Wy 11 )’

for some (xn+1’ wn+1) € Txn+ISn'

n
3 v; =( H Aj),, fori=0,-,n-1
Jj=i+l

In this context, v; (resp., w;) is called the normal (resp., tangential)

velocity of M;.
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Remark 5.2. (1) Via the identification (18) and (19), Zi(xi) can be
identified with Z;(z;) on S given in Notation 4.1 (2) and (3).

(2) The function A;(xq, 21, =+, 2,41) 1s exactly A;(xg, x1, =, Xp41)s
as defined in Lemma 3.1.
Sketch of the proof of Theorem 4.1 part (2)

From Lemma 5.2, the following decomposition occurs:

(xn+17 xn+1) = Unyn(xn+1 ) + (xn+17 Wn+1 )7

where (x,,,1, Wp41) € Txn+1S”'

Let (v

oL 775 Vg ) be the components of (x,,;, w,.;) relative to the
. 0 0 ~ Y .
basis { —, -, —VYof T, .S,, with 6/ =v_;, for j =1, -, k.
{ oo ook ol TopnSn T

From (23), we deduce v, (x,,) =< 2z,,1, 2 > Vp_1(x,) + Z,(x, ), and
from (26) and (27), we have (x,,, w,,) = v,Z,(x,,).
Then by applying (14), we obtain

k

i 0
Vn(xn) = A(en—b en, )Vn—lxn + ZB](en—l’ en) : ’
= 003,
with
Sy 5
An(g) = A(B,_1, 6,) and Z, = D B/(6,1,0,)—
j=1 592—1
Moreover, é£—1 = uan'(en_l, 0,), for j=1,-, k. In particular, (Uel’

" Ugk ) are the components of the tangential velocity of M, ,; and v, is
n

the normal component of the velocity of M, ;.
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Note that since z,,; = ®,(0,) and z, = ®,_1(0,,_;), the value
A, (q) defined in Lemma 5.2 is exactly A(0,,_1, 0,,) (see (15)).

The end of the proof of part (2) can be done by induction, using the
same arguments as before, and taking in account (23), (25), (26), and

Lemma 5.2 or is a direct consequence of part (1).

6. Proof of Theorem 3.1

We will see that the distribution A, generates actually a special
k-flag of length (n+1) on a k(n +2)+1 dimensional manifold. Let us

introduce the following notations:

e A,, is the distribution generated by {X0,, X1, -, Xk} for m =

1’ [EEIN n;

e D™ is the distribution generated by X2, and {X}, ---, Xjk m<j

<n}, form=0,--,n;

e D° = TM;

e E™*1 is the distribution generated by {X}, .-, Xj?, m<j<nl,
for m =0, ---, n.

Proposition 6.1. A,, is a special k-flag distribution. More precisely, it

satisfies the following properties:

(1) For m=1,--,n+1, the distributions D™ and E™ are of

respective constant dimensions (n —m + 2)k +1 and (n — m + 2)k;

Q) for m =1, -, n+1, E™ is an involutive sub-distribution of D™
of codimension 1. Moreover, [E™™, D™= D™ for m=1,--,n.

Actually, E™1 s the “Cauchy-characteristic distribution” of D™ for
m =1, n ([13], [14]);
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(3) [D™, D™ = D™, forall m =0, ---, n;
@A, =D""'c..cD"c..cD'cD’=TM
U U U
E"l - ...c E™ ... c EL.
Proof of Proposition 6.1

It is sufficient to show the property (4). The inclusions [E™'!,

D™ < D™ for m =n, -, 0, are an easy consequence of (4) and the
properties (1), (2), and (3) are always true, according to the definition of

spaces E™, D™, and A,,.

0\

Denote by Aj the distribution generated by {il, T )
6x0+

0xg
Forall m =1, ---, n +1, we have
D" =E™' @A, ; =D"! 1A, ;.
[D™*Y, D™1] contains the space generated by D™ and the Lie

brackets [X ,in, X,%], for i =1, ---, k. We will show by induction that, in

fact, they are generating [D™*!, D™ modulo D™

For all m =n, ---, 0, we have X,?l = Aerez—l + Z,,. It results from

the definition of 4;, Z;, and X2 that [X’,, X% ;] = 0. So, we have
[X3nr X1 = Xo (A )Xoy + [Xin, Zin )

For j =1, .-, k +1, consider the vector fields

k j
J Y 0 1 8(I)m—l r
Vit = dnaXina + 2 Wt 12 07, A

rel] —H=

01
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If we set @, 1(p, 0,,_1) = p®p,_1(6,,_1), then we have the relation

[Ym—l ] = [D(i)m—l ]_1 [Xm—l ]’

where the vectors column [Y,,_;] and [X,,_;] have {Y;}_;, -, Y£*1} and
(X0 ., -, Xk |} as components, respectively. It results that
(vL o, -, Y,ﬁf%} is a basis of A,,_;.

For m = 0, ---, n, we note [D®,, ] the Jacobian matrix of ®,,(p, 6,,)
= pD,, (em )
The following decompositions occur:

k+1

0 .
Xm = Z(I){ny;fl_l’
=

) k+16¢j '
(X}, Xp 1= D 2my) | forallm=1,-,n.
j=1 m

By similar way, for D® m»> We can show that the family of vector fields
0 1 0 k 0
{Xm’ [Xm’ Xm]’ T [Xm’ Xm ]}’
is also a basis of A,,_;. This result is also true for m = 0.

Since D™ = E™*2 @ A,,, the space [D™, D™*1] contains E™*2,
all vectors XO, XL ... X® and the Lie brackets [XL, X°], -,
[Xk X0]. Also, all the Lie brackets [X}, X0 ] are zero for r = m +1,
---,n and j =1, -, k, since X,?l does not depend on variables 6;, for

r=m+1,--,n and j =1, -, k. The other Lie brackets [X,{, X,‘n] are

zerofor r=m+1,---,nand i, j=1, -, k.

Since {X2, [XL, X%], -, [X%, X0} is a basis of A,, ;, then we

have
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[Dm+1 Dm+1] _ Em+1 @A | = D"
) m— )
which completes the proof of Proposition 6.1 and Theorem 3.1.

O

Comment 6.1. Given two integers p and m such that 1 < p < m < n,

we can look for the motion of a “sub-induced arm”, which consists of

segments of the original arm between M,_; and M,,,; included. We can
then study the motion of M,_; as the motion of the extremity of this sub-
arm for the motion commanded by the segment [M,,, M,,,;]. We put

h=m-p+1, and we write [] pom for the canonical projection from

RkJrl < (Sk )n+1 onto RkJrl < (Sk )h+1 defined as Hp,m(x’ 21, Zn+1) =
(Xp-1, 2p-1> Zps > 2y ), Where x, ; are the Cartesian coordinates of
M,,.

The evolution of the extremity M, ; of this articulated sub-arm,

controlled by the movement of [M,,, M,,,;], is a solution of the

following differential system (with notations of Theorem 4.1):
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-1 1
Xp-1 = Up—1¢p—17
-2 2
Xp-1 = Up—1¢p—1>
s k+1 k+1
Xp-1 = vp—ld)p—l’
AL _ 1
ep71 = Upo,

e k
9p,1 = Upo,

A1 1
crd; = v;1Big,

k_ o pk
0 =viaB,,
AL 1
0L, 1 =v,BL,

ék 1= UmBrliz’

AL 1
em = Uel = vm+le+1’
m

Ak k
O = Ugk = Um+1Bm1-
m
(28)

It is a controlled system on R**! x (S* Y"1 (h = m - p +1)

é = Hp,m(q)a

m k
50 . 15 N I 0
Xh = E f,IhZZ + frfl) Zp—l et Zp—]. = E ¢p_1 l—
i=p =1 xpq

We denote by Ah the distribution generated by X 2 and X,ln, - X k

m-
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This comment will be used in a future paper about singular sets of

special flags and their interpretations in terms of singularities kinematic

evolution of an articulated arm.
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